Temporal microRNA expression during in vitro myogenic progenitor cell proliferation and differentiation: regulation of proliferation by miR-682.
نویسندگان
چکیده
MicroRNAs (miRNAs) regulate gene expression by repressing target genes at the posttranscriptional level. Since miRNAs have unique expression profiles in different tissues, they provide pivotal regulation of many biological processes. The present study defined miRNA expression during murine myogenic progenitor cell (MPC) proliferation and differentiation to identify miRNAs involved in muscle regeneration. Muscle-related gene expression analyses revealed that the time course and expression of myosin heavy chain (MHC) and transcription factors (Myf5, MyoD, myogenin, and Pax7) were similar during in vitro MPC proliferation/differentiation and in vivo muscle regeneration. Comprehensive profiling revealed that 139 or 16 miRNAs were significantly changed more than twofold [false discovery rate (FDR) < 0.05] during MPC differentiation or proliferation, respectively; cluster analyses revealed five distinct patterns of miRNA expression during the time course of MPC differentiation. Not unexpectedly, the largest miRNA changes occurred in muscle-specific miRNAs (miR-1, -133a, and -499), which were upregulated >10-fold during MPC differentiation (FDR < 0.01). However, several previously unreported miRNAs were differentially expressed, including miR-10b, -335-3p, and -682. Interestingly, the temporal patterns of miR-1, -499, and -682 expression during in vitro MPC proliferation/differentiation were remarkably similar to those observed during in vivo muscle regeneration. Moreover, in vitro inhibition of miR-682, the only miRNA upregulated in proliferating compared with quiescent MPC, led to decreased MPC proliferation, further validating our in vitro assay system for the identification of miRNAs involved in muscle regeneration. Thus the differentially expressed miRNAs identified in the present study could represent new regulatory elements in MPC proliferation and differentiation.
منابع مشابه
Downregulation of HMGB1 by miR-103a-3p Promotes Cell Proliferation, Alleviates Apoptosis and Inflammation in a Cell Model of Osteoarthritis
Background: MiR-103a-3p is a small non-coding RNA and has been reported to be involved in osteogenic proliferation and differentiation, but the role of miR-103a-3p in human osteoarthritis (OA) remains unclear. Objectives: In this study, we aimed to explore its function and molecular target in chondrocytes during OA pathogenesis. Materials an...
متن کاملMatrigel Enhances in vitro Bone Differentiation of Human Marrow-derived Mesenchymal Stem Cells
Objective(s) The use of co-culture cells as well as extra cellular matrix are among those strategies that have been employed to direct mesenchymal stem cell (MSC) bone differentiation in culture. In this regard, there is no study considering the effects of Matrigel on mesenchymal stem cell (MSC) in vitro bone differentiation. This was the subject of the present study. Materials and Methods ...
متن کاملmicroRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7
Skeletal muscle satellite cells are adult stem cells responsible for postnatal skeletal muscle growth and regeneration. Paired-box transcription factor Pax7 plays a central role in satellite cell survival, self-renewal, and proliferation. However, how Pax7 is regulated during the transition from proliferating satellite cells to differentiating myogenic progenitor cells is largely unknown. In th...
متن کاملDownregulation of TMEM40 by miR-138-5p suppresses cell proliferation and mobility in clear cell renal cell carcinoma
Background: Clear cell renal cell carcinoma (ccRCC) represents approximately 70% of RCC,as the most frequent histological subtype of RCC. MiR-138-5p, a tumor-related microRNA (miRNA), has been reported to be implicated in the diverse types of human malignancies, but its role in ccRCCremains unclear. Objective: The study was designed to investigate the function...
متن کاملMiR-351 transiently increases during muscle regeneration and promotes progenitor cell proliferation and survival upon differentiation.
MicroRNAs (miRNAs) regulate many biological processes including muscle development. However, little is known regarding miRNA regulation of muscle regeneration. Murine tibialis anterior muscle was evaluated after cardiotoxin-induced injury and used for global miRNA expression analysis. From day 1 through day 21 following injury, 298 miRNAs were significantly changed at least at one time point, i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological genomics
دوره 43 10 شماره
صفحات -
تاریخ انتشار 2011